maliput/api/rules/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// BSD 3-Clause License
//
// Copyright (c) 2024, Woven by Toyota.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
//   list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// * Neither the name of the copyright holder nor the names of its
//   contributors may be used to endorse or promote products derived from
//   this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

/// Interface for accessing the [TrafficLight] in the [super::RoadNetwork]
pub struct TrafficLightBook<'a> {
    pub(super) traffic_light_book: &'a maliput_sys::api::rules::ffi::TrafficLightBook,
}

impl<'a> TrafficLightBook<'a> {
    /// Get all the [TrafficLight]s in the [TrafficLightBook]
    /// ## Return
    /// A vector of [TrafficLight]s
    pub fn traffic_lights(&self) -> Vec<TrafficLight> {
        let traffic_lights_cpp = maliput_sys::api::rules::ffi::TrafficLightBook_TrafficLights(self.traffic_light_book);
        traffic_lights_cpp
            .into_iter()
            .map(|tl| TrafficLight {
                traffic_light: unsafe { tl.traffic_light.as_ref().expect("") },
            })
            .collect::<Vec<TrafficLight>>()
    }

    /// Get a [TrafficLight] by its id
    /// ## Arguments
    /// * `id` - The id of the [TrafficLight]
    /// ## Return
    /// The [TrafficLight] with the given id.
    /// If no [TrafficLight] is found with the given id, return None.
    pub fn get_traffic_light(&self, id: &String) -> Option<TrafficLight> {
        let traffic_light = maliput_sys::api::rules::ffi::TrafficLightBook_GetTrafficLight(self.traffic_light_book, id);
        if traffic_light.is_null() {
            return None;
        }
        Some(TrafficLight {
            traffic_light: unsafe {
                traffic_light
                    .as_ref()
                    .expect("Unable to get underlying traffic light pointer")
            },
        })
    }
}

/// Models a traffic light. A traffic light is a physical signaling device
/// typically located at road intersections. It contains one or more groups of
/// light bulbs with varying colors and shapes. The lighting patterns of the
/// bulbs signify right-of-way rule information to the agents navigating the
/// intersection (e.g., vehicles, bicyclists, pedestrians, etc.). Typically, an
/// intersection will be managed by multiple traffic lights.
///
/// Note that traffic lights are physical manifestations of underlying
/// right-of-way rules and thus naturally have lower signal-to-noise ratio
/// relative to the underlying rules. Thus, oracular agents should directly use
/// the underlying right-of-way rules instead of traffic lights when navigating
/// intersections. TrafficLight exists for testing autonomous vehicles that do
/// not have access to right-of-way rules.
pub struct TrafficLight<'a> {
    pub traffic_light: &'a maliput_sys::api::rules::ffi::TrafficLight,
}

impl<'a> TrafficLight<'a> {
    /// Get the id of the [TrafficLight].
    /// ## Return
    /// The id of the [TrafficLight].
    pub fn id(&self) -> String {
        maliput_sys::api::rules::ffi::TrafficLight_id(self.traffic_light)
    }

    /// Get the position of the [TrafficLight] in the road network.
    /// ## Return
    /// An [crate::api::InertialPosition] representing the position of the [TrafficLight] in the road network.
    pub fn position_road_network(&self) -> crate::api::InertialPosition {
        let inertial_position = maliput_sys::api::rules::ffi::TrafficLight_position_road_network(self.traffic_light);
        crate::api::InertialPosition { ip: inertial_position }
    }

    /// Get the orientation of the [TrafficLight] in the road network.
    /// ## Return
    /// An [crate::api::Rotation] representing the orientation of the [TrafficLight] in the road network.
    pub fn orientation_road_network(&self) -> crate::api::Rotation {
        let rotation = maliput_sys::api::rules::ffi::TrafficLight_orientation_road_network(self.traffic_light);
        crate::api::Rotation { r: rotation }
    }

    /// Get the bulb groups of the [TrafficLight].
    /// ## Return
    /// A vector of [BulbGroup]s in the [TrafficLight].
    /// If the [TrafficLight] has no bulb groups, return an empty vector.
    pub fn bulb_groups(&self) -> Vec<BulbGroup> {
        let bulb_groups_cpp = maliput_sys::api::rules::ffi::TrafficLight_bulb_groups(self.traffic_light);
        bulb_groups_cpp
            .into_iter()
            .map(|bg| BulbGroup {
                bulb_group: unsafe { bg.bulb_group.as_ref().expect("") },
            })
            .collect::<Vec<BulbGroup>>()
    }

    /// Get a [BulbGroup] by its id.
    /// ## Arguments
    /// * `id` - The id of the [BulbGroup].
    ///
    /// ## Return
    /// The [BulbGroup] with the given id.
    /// If no [BulbGroup] is found with the given id, return None.
    pub fn get_bulb_group(&self, id: &String) -> Option<BulbGroup> {
        let bulb_group = maliput_sys::api::rules::ffi::TrafficLight_GetBulbGroup(self.traffic_light, id);
        if bulb_group.is_null() {
            return None;
        }
        Some(BulbGroup {
            bulb_group: unsafe {
                bulb_group
                    .as_ref()
                    .expect("Unable to get underlying bulb group pointer")
            },
        })
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// Defines the possible bulb colors.
pub enum BulbColor {
    Red,
    Yellow,
    Green,
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// Defines the possible bulb types.
pub enum BulbType {
    Round,
    Arrow,
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// Defines the possible bulb types.
pub enum BulbState {
    Off,
    On,
    Blinking,
}

/// Models a bulb within a bulb group.
pub struct Bulb<'a> {
    pub bulb: &'a maliput_sys::api::rules::ffi::Bulb,
}

impl Bulb<'_> {
    /// Returns this Bulb instance's unique identifier.
    pub fn unique_id(&self) -> UniqueBulbId {
        UniqueBulbId {
            unique_bulb_id: maliput_sys::api::rules::ffi::Bulb_unique_id(self.bulb),
        }
    }

    /// Get the id of the [Bulb].
    /// ## Return
    /// The id of the [Bulb].
    pub fn id(&self) -> String {
        maliput_sys::api::rules::ffi::Bulb_id(self.bulb)
    }

    /// Get the color of the [Bulb].
    /// ## Return
    /// The [BulbColor].
    pub fn color(&self) -> BulbColor {
        let color = self.bulb.color();
        match *color {
            maliput_sys::api::rules::ffi::BulbColor::kRed => BulbColor::Red,
            maliput_sys::api::rules::ffi::BulbColor::kYellow => BulbColor::Yellow,
            maliput_sys::api::rules::ffi::BulbColor::kGreen => BulbColor::Green,
            _ => panic!("Invalid bulb color"),
        }
    }

    /// Get the type of the [Bulb].
    /// ## Return
    /// The [BulbType].
    pub fn bulb_type(&self) -> BulbType {
        let bulb_type = maliput_sys::api::rules::ffi::Bulb_type(self.bulb);
        match *bulb_type {
            maliput_sys::api::rules::ffi::BulbType::kRound => BulbType::Round,
            maliput_sys::api::rules::ffi::BulbType::kArrow => BulbType::Arrow,
            _ => panic!("Invalid bulb type"),
        }
    }

    /// Get the position of the [Bulb] in the bulb group.
    /// ## Return
    /// An [crate::api::InertialPosition] representing the position of the [Bulb] in the bulb group.
    pub fn position_bulb_group(&self) -> crate::api::InertialPosition {
        let inertial_position = maliput_sys::api::rules::ffi::Bulb_position_bulb_group(self.bulb);
        crate::api::InertialPosition { ip: inertial_position }
    }

    /// Get the orientation of the [Bulb] in the bulb group.
    /// ## Return
    /// An [crate::api::Rotation] representing the orientation of the [Bulb] in the bulb group.
    pub fn orientation_bulb_group(&self) -> crate::api::Rotation {
        let rotation = maliput_sys::api::rules::ffi::Bulb_orientation_bulb_group(self.bulb);
        crate::api::Rotation { r: rotation }
    }

    /// Returns the arrow's orientation. Only applicable if [Bulb::bulb_type] returns
    /// [BulbType::Arrow].
    pub fn arrow_orientation_rad(&self) -> Option<f64> {
        let arrow_orientation = maliput_sys::api::rules::ffi::Bulb_arrow_orientation_rad(self.bulb);
        if arrow_orientation.is_null() {
            return None;
        }
        Some(arrow_orientation.value)
    }

    /// Get the possible states of the [Bulb].
    pub fn states(&self) -> Vec<BulbState> {
        let states_cpp = maliput_sys::api::rules::ffi::Bulb_states(self.bulb);
        states_cpp
            .into_iter()
            .map(Bulb::_from_cpp_state_to_rust_state)
            .collect::<Vec<BulbState>>()
    }

    /// Get the default state of the [Bulb].
    pub fn get_default_state(&self) -> BulbState {
        let default_state = self.bulb.GetDefaultState();
        Bulb::_from_cpp_state_to_rust_state(&default_state)
    }

    /// Check if the given state is possible valid for the [Bulb].
    pub fn is_valid_state(&self, state: &BulbState) -> bool {
        self.bulb.IsValidState(&Bulb::_from_rust_state_to_cpp_state(state))
    }

    /// Returns the bounding box of the bulb.
    /// ## Return
    /// A tuple containing the minimum and maximum points of the bounding box.
    pub fn bounding_box(&self) -> (crate::math::Vector3, crate::math::Vector3) {
        let min = maliput_sys::api::rules::ffi::Bulb_bounding_box_min(self.bulb);
        let max = maliput_sys::api::rules::ffi::Bulb_bounding_box_max(self.bulb);
        (crate::math::Vector3 { v: min }, crate::math::Vector3 { v: max })
    }

    /// Returns the parent [BulbGroup] of the bulb.
    /// ## Return
    /// The parent [BulbGroup] of the bulb.
    /// If the bulb is not part of any group, return None.
    pub fn bulb_group(&self) -> BulbGroup {
        BulbGroup {
            bulb_group: unsafe {
                maliput_sys::api::rules::ffi::Bulb_bulb_group(self.bulb)
                    .as_ref()
                    .expect("Unable to get underlying bulb group pointer. The Bulb might not be part of any BulbGroup.")
            },
        }
    }

    /// Convert from the C++ BulbState to the Rust BulbState
    /// It is expected to be used only internally.
    ///
    /// ## Arguments
    /// * `cpp_bulb_state` - The C++ BulbState
    /// ## Return
    /// The Rust BulbState
    /// ## Panics
    /// If the C++ BulbState is invalid.
    fn _from_cpp_state_to_rust_state(cpp_bulb_state: &maliput_sys::api::rules::ffi::BulbState) -> BulbState {
        match *cpp_bulb_state {
            maliput_sys::api::rules::ffi::BulbState::kOff => BulbState::Off,
            maliput_sys::api::rules::ffi::BulbState::kOn => BulbState::On,
            maliput_sys::api::rules::ffi::BulbState::kBlinking => BulbState::Blinking,
            _ => panic!("Invalid bulb state"),
        }
    }

    /// Convert from the Rust BulbState to the C++ BulbState
    /// It is expected to be used only internally.
    ///
    /// ## Arguments
    /// * `rust_bulb_state` - The Rust BulbState
    /// ## Return
    /// The C++ BulbState
    fn _from_rust_state_to_cpp_state(rust_bulb_state: &BulbState) -> maliput_sys::api::rules::ffi::BulbState {
        match rust_bulb_state {
            BulbState::Off => maliput_sys::api::rules::ffi::BulbState::kOff,
            BulbState::On => maliput_sys::api::rules::ffi::BulbState::kOn,
            BulbState::Blinking => maliput_sys::api::rules::ffi::BulbState::kBlinking,
        }
    }
}

/// Models a group of bulbs within a traffic light. All of the bulbs within a
/// group should share the same approximate orientation. However, this is not
/// programmatically enforced.
/// About the bulb group pose:
/// - The position of the bulb group is defined as the linear offset of this bulb group's frame
///   relative to the frame of the traffic light that contains it. The origin of
///   this bulb group's frame should approximate the bulb group's CoM.
/// - The orientation of the bulb group is defined as the rotational offset of this bulb
///   group's frame relative to the frame of the traffic light that contains it.
///   The +Z axis should align with the bulb group's "up" direction, and the +X
///   axis should point in the direction that the bulb group is facing.
///   Following a right-handed coordinate frame, the +Y axis should point left
///   when facing the +X direction.
pub struct BulbGroup<'a> {
    pub bulb_group: &'a maliput_sys::api::rules::ffi::BulbGroup,
}

impl BulbGroup<'_> {
    /// Returns this BulbGroup instance's unique identifier.
    pub fn unique_id(&self) -> UniqueBulbGroupId {
        UniqueBulbGroupId {
            unique_bulb_group_id: maliput_sys::api::rules::ffi::BulbGroup_unique_id(self.bulb_group),
        }
    }

    /// Get the id of the [BulbGroup].
    /// ## Return
    /// The id of the [BulbGroup].
    pub fn id(&self) -> String {
        maliput_sys::api::rules::ffi::BulbGroup_id(self.bulb_group)
    }

    /// Get the position of the [BulbGroup] in the traffic light.
    /// ## Return
    /// An [crate::api::InertialPosition] representing the position of the [BulbGroup] in the traffic light.
    pub fn position_traffic_light(&self) -> crate::api::InertialPosition {
        let inertial_position = maliput_sys::api::rules::ffi::BulbGroup_position_traffic_light(self.bulb_group);
        crate::api::InertialPosition { ip: inertial_position }
    }

    /// Get the orientation of the [BulbGroup] in the traffic light.
    /// ## Return
    /// An [crate::api::Rotation] representing the orientation of the [BulbGroup] in the traffic light.
    pub fn orientation_traffic_light(&self) -> crate::api::Rotation {
        let rotation = maliput_sys::api::rules::ffi::BulbGroup_orientation_traffic_light(self.bulb_group);
        crate::api::Rotation { r: rotation }
    }

    /// Returns the bulbs in the bulb group.
    /// ## Return
    /// A vector of [Bulb]s in the bulb group.
    pub fn bulbs(&self) -> Vec<Bulb> {
        let bulbs_cpp = maliput_sys::api::rules::ffi::BulbGroup_bulbs(self.bulb_group);
        bulbs_cpp
            .into_iter()
            .map(|b| Bulb {
                bulb: unsafe { b.bulb.as_ref().expect("") },
            })
            .collect::<Vec<Bulb>>()
    }

    /// Get a [Bulb] by its id
    /// ## Arguments
    /// * `id` - The id of the [Bulb].
    ///
    /// ## Return
    /// The [Bulb] with the given id.
    /// If no [Bulb] is found with the given id, return None.
    pub fn get_bulb(&self, id: &String) -> Option<Bulb> {
        let bulb = maliput_sys::api::rules::ffi::BulbGroup_GetBulb(self.bulb_group, id);
        if bulb.is_null() {
            return None;
        }
        Some(Bulb {
            bulb: unsafe { bulb.as_ref().expect("Unable to get underlying bulb pointer") },
        })
    }

    /// Returns the parent [TrafficLight] of the bulb group.
    /// ## Return
    /// The parent [TrafficLight] of the bulb group.
    pub fn traffic_light(&self) -> TrafficLight {
        TrafficLight {
            traffic_light: unsafe {
                maliput_sys::api::rules::ffi::BulbGroup_traffic_light(self.bulb_group)
                    .as_ref()
                    .expect("Unable to get underlying traffic light pointer. The BulbGroup might not be registered to a TrafficLight.")
            },
        }
    }
}

/// Uniquely identifies a bulb in the `Inertial` space. This consists of the
/// concatenation of the bulb's ID, the ID of the bulb group that contains the
/// bulb, and the the ID of the traffic light that contains the bulb group.
///
/// String representation of this ID is:
/// "`traffic_light_id().string()`-`bulb_group_id.string()`-`bulb_id.string()`"
pub struct UniqueBulbId {
    unique_bulb_id: cxx::UniquePtr<maliput_sys::api::rules::ffi::UniqueBulbId>,
}

impl UniqueBulbId {
    /// Get the traffic light id of the [UniqueBulbId].
    /// ## Return
    /// The traffic light id of the [UniqueBulbId].
    pub fn traffic_light_id(&self) -> String {
        maliput_sys::api::rules::ffi::UniqueBulbId_traffic_light_id(&self.unique_bulb_id)
    }

    /// Get the bulb group id of the [UniqueBulbId].
    /// ## Return
    /// The bulb group id of the [UniqueBulbId].
    pub fn bulb_group_id(&self) -> String {
        maliput_sys::api::rules::ffi::UniqueBulbId_bulb_group_id(&self.unique_bulb_id)
    }

    /// Get the bulb id of the [UniqueBulbId].
    /// ## Return
    /// The bulb id of the [UniqueBulbId].
    pub fn bulb_id(&self) -> String {
        maliput_sys::api::rules::ffi::UniqueBulbId_bulb_id(&self.unique_bulb_id)
    }

    /// Get the string representation of the [UniqueBulbId].
    /// ## Return
    /// The string representation of the [UniqueBulbId].
    pub fn string(&self) -> String {
        self.unique_bulb_id.string().to_string()
    }
}

/// Uniquely identifies a bulb group in the `Inertial` space. This consists of
/// the concatenation of the ID of the bulb group, and the ID of the traffic
/// light that contains the bulb group.
///
/// String representation of this ID is:
/// "`traffic_light_id().string()`-`bulb_group_id.string()`"
pub struct UniqueBulbGroupId {
    unique_bulb_group_id: cxx::UniquePtr<maliput_sys::api::rules::ffi::UniqueBulbGroupId>,
}

impl UniqueBulbGroupId {
    /// Get the traffic light id of the [UniqueBulbGroupId].
    /// ## Return
    /// The traffic light id of the [UniqueBulbGroupId].
    pub fn traffic_light_id(&self) -> String {
        maliput_sys::api::rules::ffi::UniqueBulbGroupId_traffic_light_id(&self.unique_bulb_group_id)
    }

    /// Get the bulb group id of the [UniqueBulbGroupId].
    /// ## Return
    /// The bulb group id of the [UniqueBulbGroupId].
    pub fn bulb_group_id(&self) -> String {
        maliput_sys::api::rules::ffi::UniqueBulbGroupId_bulb_group_id(&self.unique_bulb_group_id)
    }

    /// Get the string representation of the [UniqueBulbGroupId].
    /// ## Return
    /// The string representation of the [UniqueBulbGroupId].
    pub fn string(&self) -> String {
        self.unique_bulb_group_id.string().to_string()
    }
}
/// Abstraction for holding the output of [RoadRulebook::rules()] and [RoadRulebook::find_rules()]
/// methods.
/// This struct contains a map of [DiscreteValueRule]s and [RangeValueRule]s.
/// The keys of the map are the ids of the rules.
/// The values of the map are the rules.
pub struct QueryResults {
    pub discrete_value_rules: std::collections::HashMap<String, DiscreteValueRule>,
    pub range_value_rules: std::collections::HashMap<String, RangeValueRule>,
}

/// Interface for querying "rules of the road". This interface
/// provides access to static information about a road network (i.e.,
/// information determined prior to the beginning of a simulation). Some
/// rule types may refer to additional dynamic information which will be
/// provided by other interfaces.
pub struct RoadRulebook<'a> {
    pub(super) road_rulebook: &'a maliput_sys::api::rules::ffi::RoadRulebook,
}

impl<'a> RoadRulebook<'a> {
    /// Returns the DiscreteValueRule with the specified `id`.
    /// ## Arguments
    /// * `rule_id` - The id of the rule.
    /// ## Return
    /// The DiscreteValueRule with the given id.
    pub fn get_discrete_value_rule(&self, rule_id: &String) -> DiscreteValueRule {
        DiscreteValueRule {
            discrete_value_rule: maliput_sys::api::rules::ffi::RoadRulebook_GetDiscreteValueRule(
                self.road_rulebook,
                rule_id,
            ),
        }
    }
    /// Returns the RangeValueRule with the specified `id`.
    /// ## Arguments
    /// * `rule_id` - The id of the rule.
    /// ## Return
    /// The RangeValueRule with the given id.
    pub fn get_range_value_rule(&self, rule_id: &String) -> RangeValueRule {
        RangeValueRule {
            range_value_rule: maliput_sys::api::rules::ffi::RoadRulebook_GetRangeValueRule(self.road_rulebook, rule_id),
        }
    }

    /// Returns all the rules in the road rulebook.
    /// ## Return
    /// A [QueryResults] containing all the rules in the road rulebook.
    pub fn rules(&self) -> QueryResults {
        let query_results_cpp = maliput_sys::api::rules::ffi::RoadRulebook_Rules(self.road_rulebook);
        let discrete_value_rules_id =
            maliput_sys::api::rules::ffi::QueryResults_discrete_value_rules(&query_results_cpp);
        let range_value_rules_id = maliput_sys::api::rules::ffi::QueryResults_range_value_rules(&query_results_cpp);
        let mut dvr_map = std::collections::HashMap::new();
        for rule_id in discrete_value_rules_id {
            let rule = self.get_discrete_value_rule(&rule_id);
            dvr_map.insert(rule.id(), rule);
        }
        let mut rvr_map = std::collections::HashMap::new();
        for rule_id in range_value_rules_id {
            let rule = self.get_range_value_rule(&rule_id);
            rvr_map.insert(rule.id(), rule);
        }
        QueryResults {
            discrete_value_rules: dvr_map,
            range_value_rules: rvr_map,
        }
    }

    pub fn find_rules(&self, ranges: &Vec<super::LaneSRange>, tolerance: f64) -> QueryResults {
        // let mut ranges_cpp = cxx::CxxVector::new().pin_mut();
        let mut ranges_cpp = Vec::new();
        for range in ranges {
            ranges_cpp.push(maliput_sys::api::rules::ffi::ConstLaneSRangeRef {
                lane_s_range: &range.lane_s_range,
            });
        }
        let query_results_cpp =
            maliput_sys::api::rules::ffi::RoadRulebook_FindRules(self.road_rulebook, &ranges_cpp, tolerance);

        let discrete_value_rules_id =
            maliput_sys::api::rules::ffi::QueryResults_discrete_value_rules(&query_results_cpp);
        let range_value_rules_id = maliput_sys::api::rules::ffi::QueryResults_range_value_rules(&query_results_cpp);
        let mut dvr_map = std::collections::HashMap::new();
        for rule_id in discrete_value_rules_id {
            let rule = self.get_discrete_value_rule(&rule_id);
            dvr_map.insert(rule.id(), rule);
        }
        let mut rvr_map = std::collections::HashMap::new();
        for rule_id in range_value_rules_id {
            let rule = self.get_range_value_rule(&rule_id);
            rvr_map.insert(rule.id(), rule);
        }
        QueryResults {
            discrete_value_rules: dvr_map,
            range_value_rules: rvr_map,
        }
    }
}

/// ## Rule
///
/// A Rule may have multiple states that affect agent behavior while it is
/// driving through the rule's zone. The possible states of a Rule must be
/// semantically coherent. The current state of a Rule is given by a
/// [RuleStateProvider]. States can be:
///
/// - range based ([RangeValueRule]).
/// - discrete ([DiscreteValueRule]).
///
/// ## DiscreteValueRule
///
/// [DiscreteValue]s are defined by a string value.
/// Semantics of this rule are based on _all_ possible values that this
/// [DiscreteValueRule::type_id] could have (as specified by RuleRegistry::FindRuleByType()),
/// not only the subset of values that a specific instance of this rule can
/// be in.
pub struct DiscreteValueRule {
    discrete_value_rule: cxx::UniquePtr<maliput_sys::api::rules::ffi::DiscreteValueRule>,
}

impl DiscreteValueRule {
    /// Returns the Id of the rule as a string.
    pub fn id(&self) -> String {
        maliput_sys::api::rules::ffi::DiscreteValueRule_id(&self.discrete_value_rule)
    }
    /// Returns the type of the rule as a string.
    /// Example: "right-of-way-rule-type-id", "direction-usage-rule-type-id"
    pub fn type_id(&self) -> String {
        maliput_sys::api::rules::ffi::DiscreteValueRule_type_id(&self.discrete_value_rule)
    }
    /// Returns a [LaneSRoute] that represents the zone that the rule applies to.
    pub fn zone(&self) -> crate::api::LaneSRoute {
        let lane_s_route = maliput_sys::api::rules::ffi::DiscreteValueRule_zone(&self.discrete_value_rule);
        crate::api::LaneSRoute { lane_s_route }
    }
    /// Returns the states of the rule.
    pub fn states(&self) -> Vec<DiscreteValue> {
        let states_cpp = &self.discrete_value_rule.states();
        states_cpp
            .into_iter()
            .map(|dv| DiscreteValue {
                rule_state: RuleStateBase {
                    severity: maliput_sys::api::rules::ffi::DiscreteValueRuleDiscreteValue_severity(dv),
                    related_rules: maliput_sys::api::rules::ffi::DiscreteValueRuleDiscreteValue_related_rules(dv),
                    related_unique_ids: maliput_sys::api::rules::ffi::DiscreteValueRuleDiscreteValue_related_unique_ids(
                        dv,
                    ),
                },
                value: maliput_sys::api::rules::ffi::DiscreteValueRuleDiscreteValue_value(dv),
            })
            .collect::<Vec<DiscreteValue>>()
    }
}

/// ## Rule
///
/// A Rule may have multiple states that affect agent behavior while it is
/// driving through the rule's zone. The possible states of a Rule must be
/// semantically coherent. The current state of a Rule is given by a
/// [RuleStateProvider]. States can be:
///
/// - range based ([RangeValueRule]).
/// - discrete ([DiscreteValueRule]).
///
/// ## RangeValueRule
///
/// [Range]s describe a numeric range based rule.
/// Ranges are closed and continuous, defined by a minimum and maximum quantity.
/// When only one extreme is formally defined, the other should take a
/// semantically correct value. For example, if a speed limit only specifies a
/// maximum value, the minimum value is typically zero.
pub struct RangeValueRule {
    range_value_rule: cxx::UniquePtr<maliput_sys::api::rules::ffi::RangeValueRule>,
}

impl RangeValueRule {
    /// Returns the Id of the rule as a string.
    pub fn id(&self) -> String {
        maliput_sys::api::rules::ffi::RangeValueRule_id(&self.range_value_rule)
    }
    /// Returns the type of the rule as a string.
    /// Example: "right-of-way-rule-type-id", "direction-usage-rule-type-id"
    pub fn type_id(&self) -> String {
        maliput_sys::api::rules::ffi::RangeValueRule_type_id(&self.range_value_rule)
    }
    /// Returns a [LaneSRoute] that represents the zone that the rule applies to.
    pub fn zone(&self) -> crate::api::LaneSRoute {
        let lane_s_route = maliput_sys::api::rules::ffi::RangeValueRule_zone(&self.range_value_rule);
        crate::api::LaneSRoute { lane_s_route }
    }
    /// Returns the states of the rule.
    pub fn states(&self) -> Vec<Range> {
        let states_cpp = &self.range_value_rule.states();
        states_cpp
            .into_iter()
            .map(|r| Range {
                rule_state: RuleStateBase {
                    severity: maliput_sys::api::rules::ffi::RangeValueRuleRange_severity(r),
                    related_rules: maliput_sys::api::rules::ffi::RangeValueRuleRange_related_rules(r),
                    related_unique_ids: maliput_sys::api::rules::ffi::RangeValueRuleRange_related_unique_ids(r),
                },
                description: maliput_sys::api::rules::ffi::RangeValueRuleRange_description(r),
                min: maliput_sys::api::rules::ffi::RangeValueRuleRange_min(r),
                max: maliput_sys::api::rules::ffi::RangeValueRuleRange_max(r),
            })
            .collect::<Vec<Range>>()
    }
}

/// Defines a base state for a rule.
///
/// ## RuleStateBase
///
/// - `severity` - The severity of the rule state.
/// - `related_rules` - A map of related rules. The key is the group name and the value is a vector of rule ids.
/// - `related_unique_ids` - A map of related unique ids. The key is the group name and the value is a vector of unique ids.
///
/// See [DiscreteValueRule] and [RangeValueRule] for more information.
pub struct RuleStateBase {
    severity: i32,
    related_rules: cxx::UniquePtr<cxx::CxxVector<maliput_sys::api::rules::ffi::RelatedRule>>,
    related_unique_ids: cxx::UniquePtr<cxx::CxxVector<maliput_sys::api::rules::ffi::RelatedUniqueId>>,
}

/// Defines the interface for a rule state.
/// ## To implement by the trait user.
/// - `get_rule_state` - Returns the base state of the rule.
///   To be implemented by the concrete rule state.
pub trait RuleState {
    /// Returns the base state of the rule.
    /// To be implemented by the concrete rule state.
    fn get_rule_state(&self) -> &RuleStateBase;

    /// Returns the severity of the rule state.
    fn severity(&self) -> i32 {
        self.get_rule_state().severity
    }

    /// Returns a map of related unique ids. The key is the group name and the value is a vector of unique ids.
    fn related_rules(&self) -> std::collections::HashMap<&String, &Vec<String>> {
        self.get_rule_state()
            .related_rules
            .iter()
            .map(|rr| (&rr.group_name, &rr.rule_ids))
            .collect::<std::collections::HashMap<&String, &Vec<String>>>()
    }
    /// Returns a map of related unique ids. The key is the group name and the value is a vector of unique ids.
    fn related_unique_ids(&self) -> std::collections::HashMap<&String, &Vec<String>> {
        self.get_rule_state()
            .related_unique_ids
            .iter()
            .map(|rui| (&rui.group_name, &rui.unique_ids))
            .collect::<std::collections::HashMap<&String, &Vec<String>>>()
    }
}

/// Defines a discrete value for a [DiscreteValueRule].
/// It extends the [RuleStateBase] with the value of the discrete value.
pub struct DiscreteValue {
    rule_state: RuleStateBase,
    value: String,
}

impl RuleState for DiscreteValue {
    fn get_rule_state(&self) -> &RuleStateBase {
        &self.rule_state
    }
}

impl DiscreteValue {
    /// Returns the value of the discrete value.
    pub fn value(&self) -> &String {
        &self.value
    }
}

/// Defines a range value for a [RangeValueRule].
/// It extends the [RuleStateBase] with the description, and min and max values of the range.
pub struct Range {
    rule_state: RuleStateBase,
    description: String,
    min: f64,
    max: f64,
}

impl RuleState for Range {
    fn get_rule_state(&self) -> &RuleStateBase {
        &self.rule_state
    }
}

impl Range {
    /// Returns the description of the range value.
    pub fn description(&self) -> &String {
        &self.description
    }
    /// Returns the minimum value of the range.
    pub fn min(&self) -> f64 {
        self.min
    }
    /// Returns the maximum value of the range.
    pub fn max(&self) -> f64 {
        self.max
    }
}