maliput/api/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
// BSD 3-Clause License
//
// Copyright (c) 2024, Woven by Toyota.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use crate::math::Matrix3;
use crate::math::Quaternion;
use crate::math::RollPitchYaw;
use crate::math::Vector3;
pub mod rules;
/// A RoadGeometry.
/// Wrapper around C++ implementation `maliput::api::RoadGeometry`.
/// See RoadNetwork for an example of how to get a RoadGeometry.
pub struct RoadGeometry<'a> {
rg: &'a maliput_sys::api::ffi::RoadGeometry,
}
impl<'a> RoadGeometry<'a> {
/// Returns the id of the RoadGeometry.
pub fn id(&self) -> String {
maliput_sys::api::ffi::RoadGeometry_id(self.rg)
}
/// Returns the number of Junctions in the RoadGeometry.
///
/// Return value is non-negative.
pub fn num_junctions(&self) -> i32 {
self.rg.num_junctions()
}
/// Returns the tolerance guaranteed for linear measurements (positions).
pub fn linear_tolerance(&self) -> f64 {
self.rg.linear_tolerance()
}
/// Returns the tolerance guaranteed for angular measurements (orientations).
pub fn angular_tolerance(&self) -> f64 {
self.rg.angular_tolerance()
}
/// Returns the number of BranchPoints in the RoadGeometry.
///
/// Return value is non-negative.
pub fn num_branch_points(&self) -> i32 {
self.rg.num_branch_points()
}
/// Determines the RoadPosition corresponding to InertialPosition `inertial_position`.
///
/// Returns a RoadPositionResult. Its RoadPosition is the point in the
/// RoadGeometry's manifold which is, in the `Inertial`-frame, closest to
/// `inertial_position`. Its InertialPosition is the `Inertial`-frame equivalent of the
/// RoadPosition and its distance is the Cartesian distance from
/// `inertial_position` to the nearest point.
///
/// This method guarantees that its result satisfies the condition that
/// `result.lane.to_lane_position(result.pos)` is within `linear_tolerance()`
/// of the returned InertialPosition.
///
/// The map from RoadGeometry to the `Inertial`-frame is not onto (as a bounded
/// RoadGeometry cannot completely cover the unbounded Cartesian universe).
/// If `inertial_position` does represent a point contained within the volume
/// of the RoadGeometry, then result distance is guaranteed to be less
/// than or equal to `linear_tolerance()`.
///
/// The map from RoadGeometry to `Inertial`-frame is not necessarily one-to-one.
/// Different `(s,r,h)` coordinates from different Lanes, potentially from
/// different Segments, may map to the same `(x,y,z)` `Inertial`-frame location.
///
/// If `inertial_position` is contained within the volumes of multiple Segments,
/// then ToRoadPosition() will choose a Segment which yields the minimum
/// height `h` value in the result. If the chosen Segment has multiple
/// Lanes, then ToRoadPosition() will choose a Lane which contains
/// `inertial_position` within its `lane_bounds()` if possible, and if that is
/// still ambiguous, it will further select a Lane which minimizes the
/// absolute value of the lateral `r` coordinate in the result.
///
/// Wrapper around C++ implementation `maliput::api::RoadGeometry::ToRoadPosition`.
pub fn to_road_position(&self, inertial_position: &InertialPosition) -> RoadPositionResult {
let rpr = maliput_sys::api::ffi::RoadGeometry_ToRoadPosition(self.rg, &inertial_position.ip);
RoadPositionResult {
road_position: RoadPosition {
rp: maliput_sys::api::ffi::RoadPositionResult_road_position(&rpr),
},
nearest_position: InertialPosition {
ip: maliput_sys::api::ffi::RoadPositionResult_nearest_position(&rpr),
},
distance: maliput_sys::api::ffi::RoadPositionResult_distance(&rpr),
}
}
/// Get the lane matching given `lane_id`.
/// ### Arguments
/// * `lane_id` - The id of the lane.
/// ### Return
/// The lane with the given id.
/// If no lane is found with the given id, return None.
pub fn get_lane(&self, lane_id: &String) -> Option<Lane> {
let lane = maliput_sys::api::ffi::RoadGeometry_GetLane(self.rg, lane_id);
if lane.lane.is_null() {
return None;
}
Some(Lane {
lane: unsafe { lane.lane.as_ref().expect("") },
})
}
/// Get all lanes of the `RoadGeometry`.
/// Returns a vector of `Lane`.
/// # Example
/// ```rust, no_run
/// use maliput::api::RoadNetwork;
/// use std::collections::HashMap;
///
/// let package_location = std::env::var("CARGO_MANIFEST_DIR").unwrap();
/// let xodr_path = format!("{}/data/xodr/TShapeRoad.xodr", package_location);
/// let road_network_properties = HashMap::from([("road_geometry_id", "my_rg_from_rust"), ("opendrive_file", xodr_path.as_str())]);
/// let road_network = RoadNetwork::new("maliput_malidrive", &road_network_properties);
/// let road_geometry = road_network.road_geometry();
/// let lanes = road_geometry.get_lanes();
/// for lane in lanes {
/// println!("lane_id: {}", lane.id());
/// }
/// ```
pub fn get_lanes(&self) -> Vec<Lane> {
let lanes = maliput_sys::api::ffi::RoadGeometry_GetLanes(self.rg);
lanes
.into_iter()
.map(|l| Lane {
lane: unsafe { l.lane.as_ref().expect("") },
})
.collect::<Vec<Lane>>()
}
/// Get the segment matching given `segment_id`.
pub fn get_segment(&self, segment_id: &String) -> Segment {
unsafe {
Segment {
segment: maliput_sys::api::ffi::RoadGeometry_GetSegment(self.rg, segment_id)
.as_ref()
.expect(""),
}
}
}
/// Get the junction matching given `junction_id`.
pub fn get_junction(&self, junction_id: &String) -> Junction {
unsafe {
Junction {
junction: maliput_sys::api::ffi::RoadGeometry_GetJunction(self.rg, junction_id)
.as_ref()
.expect(""),
}
}
}
/// Get the branch point matching given `branch_point_id`.
pub fn get_branch_point(&self, branch_point_id: &String) -> BranchPoint {
unsafe {
BranchPoint {
branch_point: maliput_sys::api::ffi::RoadGeometry_GetBranchPoint(self.rg, branch_point_id)
.as_ref()
.expect("Underlying BranchPoint is null"),
}
}
}
}
/// A RoadNetwork.
/// Wrapper around C++ implementation `maliput::api::RoadNetwork`.
///
/// ## Example
///
/// ```rust, no_run
/// use maliput::api::RoadNetwork;
/// use std::collections::HashMap;
///
/// let package_location = std::env::var("CARGO_MANIFEST_DIR").unwrap();
/// let xodr_path = format!("{}/data/xodr/TShapeRoad.xodr", package_location);
/// let road_network_properties = HashMap::from([("road_geometry_id", "my_rg_from_rust"), ("opendrive_file", xodr_path.as_str())]);
/// let road_network = RoadNetwork::new("maliput_malidrive", &road_network_properties);
/// let road_geometry = road_network.road_geometry();
/// println!("num_junctions: {}", road_geometry.num_junctions());
/// ```
pub struct RoadNetwork {
pub(crate) rn: cxx::UniquePtr<maliput_sys::api::ffi::RoadNetwork>,
}
impl RoadNetwork {
/// Create a new `RoadNetwork` with the given `road_network_loader_id` and `properties`.
///
/// # Arguments
///
/// * `road_network_loader_id` - The id of the road network loader.
/// * `properties` - The properties of the road network.
///
/// # Details
/// It relies on `maliput_sys::plugin::ffi::CreateRoadNetwork` to create a new `RoadNetwork`.
pub fn new(road_network_loader_id: &str, properties: &std::collections::HashMap<&str, &str>) -> RoadNetwork {
// Translate the properties to ffi types
let mut properties_vec = Vec::new();
for (key, value) in properties.iter() {
properties_vec.push(format!("{}:{}", key, value));
}
std::env::set_var("MALIPUT_PLUGIN_PATH", maliput_sdk::get_maliput_malidrive_plugin_path());
RoadNetwork {
rn: maliput_sys::plugin::ffi::CreateRoadNetwork(&road_network_loader_id.to_string(), &properties_vec),
}
}
/// Get the `RoadGeometry` of the `RoadNetwork`.
pub fn road_geometry(&self) -> RoadGeometry {
unsafe {
RoadGeometry {
rg: self.rn.road_geometry().as_ref().expect(""),
}
}
}
/// Get the `IntersectionBook` of the `RoadNetwork`.
pub fn intersection_book(&mut self) -> IntersectionBook {
let intersection_book_ffi = self
.rn
.as_mut()
.expect("Underlying RoadNetwork is null")
.intersection_book();
IntersectionBook {
intersection_book: unsafe {
intersection_book_ffi
.as_mut()
.expect("Underlying IntersectionBook is null")
},
}
}
/// Get the `TrafficLightBook` of the `RoadNetwork`.
pub fn traffic_light_book(&self) -> rules::TrafficLightBook {
let traffic_light_book_ffi = self.rn.traffic_light_book();
rules::TrafficLightBook {
traffic_light_book: unsafe {
traffic_light_book_ffi
.as_ref()
.expect("Underlying TrafficLightBook is null")
},
}
}
/// Get the `RoadRulebook` of the `RoadNetwork`.
pub fn rulebook(&self) -> rules::RoadRulebook {
let rulebook_ffi = self.rn.rulebook();
rules::RoadRulebook {
road_rulebook: unsafe { rulebook_ffi.as_ref().expect("Underlying RoadRulebook is null") },
}
}
}
/// A Lane Position.
/// Wrapper around C++ implementation `maliput::api::LanePosition`.
///
/// ## Example
///
/// ```rust, no_run
/// use maliput::api::LanePosition;
///
/// let lane_pos = LanePosition::new(1.0, 2.0, 3.0);
/// println!("lane_pos = {}", lane_pos);
/// assert_eq!(lane_pos.s(), 1.0);
/// assert_eq!(lane_pos.r(), 2.0);
/// assert_eq!(lane_pos.h(), 3.0);
/// ```
pub struct LanePosition {
lp: cxx::UniquePtr<maliput_sys::api::ffi::LanePosition>,
}
impl LanePosition {
/// Create a new `LanePosition` with the given `s`, `r`, and `h` components.
pub fn new(s: f64, r: f64, h: f64) -> LanePosition {
LanePosition {
lp: maliput_sys::api::ffi::LanePosition_new(s, r, h),
}
}
/// Get the `s` component of the `LanePosition`.
pub fn s(&self) -> f64 {
self.lp.s()
}
/// Get the `r` component of the `LanePosition`.
pub fn r(&self) -> f64 {
self.lp.r()
}
/// Get the `h` component of the `LanePosition`.
pub fn h(&self) -> f64 {
self.lp.h()
}
/// Returns all components as 3-vector `[s, r, h]`.
pub fn srh(&self) -> Vector3 {
let srh = self.lp.srh();
Vector3::new(srh.x(), srh.y(), srh.z())
}
/// Set the `s` component of the `LanePosition`.
pub fn set_s(&mut self, s: f64) {
self.lp.as_mut().expect("Underlying LanePosition is null").set_s(s);
}
/// Set the `r` component of the `LanePosition`.
pub fn set_r(&mut self, r: f64) {
self.lp.as_mut().expect("Underlying LanePosition is null").set_r(r);
}
/// Set the `h` component of the `LanePosition`.
pub fn set_h(&mut self, h: f64) {
self.lp.as_mut().expect("Underlying LanePosition is null").set_h(h);
}
/// Set all components from 3-vector `[s, r, h]`.
pub fn set_srh(&mut self, srh: &Vector3) {
let ffi_vec = maliput_sys::math::ffi::Vector3_new(srh.x(), srh.y(), srh.z());
self.lp
.as_mut()
.expect("Underlying LanePosition is null")
.set_srh(&ffi_vec);
}
}
impl PartialEq for LanePosition {
fn eq(&self, other: &Self) -> bool {
self.srh() == other.srh()
}
}
impl Eq for LanePosition {}
impl std::fmt::Display for LanePosition {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", maliput_sys::api::ffi::LanePosition_to_str(&self.lp))
}
}
impl std::fmt::Debug for LanePosition {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("LanePosition")
.field("s", &self.s())
.field("r", &self.r())
.field("h", &self.h())
.finish()
}
}
/// An Inertial Position.
/// Wrapper around C++ implementation `maliput::api::InertialPosition`.
///
/// ## Example
///
/// ```rust, no_run
/// use maliput::api::InertialPosition;
///
/// let inertial_pos = InertialPosition::new(1.0, 2.0, 3.0);
/// println!("inertial_pos = {}", inertial_pos);
/// assert_eq!(inertial_pos.x(), 1.0);
/// assert_eq!(inertial_pos.y(), 2.0);
/// assert_eq!(inertial_pos.z(), 3.0);
/// ```
pub struct InertialPosition {
ip: cxx::UniquePtr<maliput_sys::api::ffi::InertialPosition>,
}
impl InertialPosition {
/// Create a new `InertialPosition` with the given `x`, `y`, and `z` components.
pub fn new(x: f64, y: f64, z: f64) -> InertialPosition {
InertialPosition {
ip: maliput_sys::api::ffi::InertialPosition_new(x, y, z),
}
}
/// Get the `x` component of the `InertialPosition`.
pub fn x(&self) -> f64 {
self.ip.x()
}
/// Get the `y` component of the `InertialPosition`.
pub fn y(&self) -> f64 {
self.ip.y()
}
/// Get the `z` component of the `InertialPosition`.
pub fn z(&self) -> f64 {
self.ip.z()
}
/// Returns all components as 3-vector `[x, y, z]`.
pub fn xyz(&self) -> Vector3 {
let xyz = self.ip.xyz();
Vector3::new(xyz.x(), xyz.y(), xyz.z())
}
/// Set the `x` component of the `InertialPosition`.
pub fn set_x(&mut self, x: f64) {
self.ip.as_mut().expect("Underlying InertialPosition is null").set_x(x);
}
/// Set the `y` component of the `InertialPosition`.
pub fn set_y(&mut self, y: f64) {
self.ip.as_mut().expect("Underlying InertialPosition is null").set_y(y);
}
/// Set the `z` component of the `InertialPosition`.
pub fn set_z(&mut self, z: f64) {
self.ip.as_mut().expect("Underlying InertialPosition is null").set_z(z);
}
/// Set all components from 3-vector `[x, y, z]`.
pub fn set_xyz(&mut self, xyz: &Vector3) {
let ffi_vec = maliput_sys::math::ffi::Vector3_new(xyz.x(), xyz.y(), xyz.z());
self.ip
.as_mut()
.expect("Underlying InertialPosition is null")
.set_xyz(&ffi_vec);
}
/// Get the length of `InertialPosition`.
pub fn length(&self) -> f64 {
self.ip.length()
}
/// Get the distance between two `InertialPosition`.
pub fn distance(&self, other: &InertialPosition) -> f64 {
self.ip.Distance(&other.ip)
}
}
impl PartialEq for InertialPosition {
fn eq(&self, other: &Self) -> bool {
maliput_sys::api::ffi::InertialPosition_operator_eq(&self.ip, &other.ip)
}
}
impl Eq for InertialPosition {}
impl std::fmt::Display for InertialPosition {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}", maliput_sys::api::ffi::InertialPosition_to_str(&self.ip))
}
}
impl std::fmt::Debug for InertialPosition {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("InertialPosition")
.field("x", &self.x())
.field("y", &self.y())
.field("z", &self.z())
.finish()
}
}
impl std::ops::Add for InertialPosition {
type Output = InertialPosition;
fn add(self, other: InertialPosition) -> InertialPosition {
InertialPosition {
ip: maliput_sys::api::ffi::InertialPosition_operator_sum(&self.ip, &other.ip),
}
}
}
impl std::ops::Sub for InertialPosition {
type Output = InertialPosition;
fn sub(self, other: InertialPosition) -> InertialPosition {
InertialPosition {
ip: maliput_sys::api::ffi::InertialPosition_operator_sub(&self.ip, &other.ip),
}
}
}
impl std::ops::Mul<f64> for InertialPosition {
type Output = InertialPosition;
fn mul(self, scalar: f64) -> InertialPosition {
InertialPosition {
ip: maliput_sys::api::ffi::InertialPosition_operator_mul_scalar(&self.ip, scalar),
}
}
}
/// Bounds in the lateral dimension (r component) of a `Lane`-frame, consisting
/// of a pair of minimum and maximum r value. The bounds must straddle r = 0,
/// i.e., the minimum must be <= 0 and the maximum must be >= 0.
pub struct RBounds {
min: f64,
max: f64,
}
impl RBounds {
pub fn new(min: f64, max: f64) -> RBounds {
RBounds { min, max }
}
pub fn min(&self) -> f64 {
self.min
}
pub fn max(&self) -> f64 {
self.max
}
pub fn set_min(&mut self, min: f64) {
self.min = min;
}
pub fn set_max(&mut self, max: f64) {
self.max = max;
}
}
/// Bounds in the elevation dimension (`h` component) of a `Lane`-frame,
/// consisting of a pair of minimum and maximum `h` value. The bounds
/// must straddle `h = 0`, i.e., the minimum must be `<= 0` and the
/// maximum must be `>= 0`.
pub struct HBounds {
min: f64,
max: f64,
}
impl HBounds {
pub fn new(min: f64, max: f64) -> HBounds {
HBounds { min, max }
}
pub fn min(&self) -> f64 {
self.min
}
pub fn max(&self) -> f64 {
self.max
}
pub fn set_min(&mut self, min: f64) {
self.min = min;
}
pub fn set_max(&mut self, max: f64) {
self.max = max;
}
}
/// Isometric velocity vector in a `Lane`-frame.
///
/// sigma_v, rho_v, and eta_v are the components of velocity in a
/// (sigma, rho, eta) coordinate system. (sigma, rho, eta) have the same
/// orientation as the (s, r, h) at any given point in space, however they
/// form an isometric system with a Cartesian distance metric. Hence,
/// IsoLaneVelocity represents a "real" physical velocity vector (albeit
/// with an orientation relative to the road surface).
#[derive(Default, Copy, Clone, Debug, PartialEq)]
pub struct IsoLaneVelocity {
pub sigma_v: f64,
pub rho_v: f64,
pub eta_v: f64,
}
impl IsoLaneVelocity {
/// Create a new `IsoLaneVelocity` with the given `sigma_v`, `rho_v`, and `eta_v` components.
pub fn new(sigma_v: f64, rho_v: f64, eta_v: f64) -> IsoLaneVelocity {
IsoLaneVelocity { sigma_v, rho_v, eta_v }
}
}
/// A maliput::api::Lane
/// Wrapper around C++ implementation `maliput::api::Lane`.
pub struct Lane<'a> {
lane: &'a maliput_sys::api::ffi::Lane,
}
impl<'a> Lane<'a> {
/// Returns the index of this Lane within the Segment which owns it.
pub fn index(&self) -> i32 {
self.lane.index()
}
/// Get the left lane of the `Lane`.
pub fn to_left(&self) -> Option<Lane> {
let lane = self.lane.to_left();
if lane.is_null() {
None
} else {
unsafe {
Some(Lane {
lane: lane.as_ref().expect(""),
})
}
}
}
/// Get the right lane of the `Lane`.
pub fn to_right(&self) -> Option<Lane> {
let lane = self.lane.to_right();
if lane.is_null() {
None
} else {
unsafe {
Some(Lane {
lane: lane.as_ref().expect(""),
})
}
}
}
/// Get the length of the `Lane`.
pub fn length(&self) -> f64 {
self.lane.length()
}
/// Get the id of the `Lane` as a string.
pub fn id(&self) -> String {
maliput_sys::api::ffi::Lane_id(self.lane)
}
/// Returns the Segment to which this Lane belongs.
pub fn segment(&self) -> Segment<'a> {
unsafe {
Segment {
segment: self.lane.segment().as_ref().expect(""),
}
}
}
/// Get the orientation of the `Lane` at the given `LanePosition`.
pub fn get_orientation(&self, lane_position: &LanePosition) -> Rotation {
Rotation {
r: maliput_sys::api::ffi::Lane_GetOrientation(self.lane, lane_position.lp.as_ref().expect("")),
}
}
/// Get the inertial position of the `Lane` at the given `LanePosition`.
pub fn to_inertial_position(&self, lane_position: &LanePosition) -> InertialPosition {
InertialPosition {
ip: maliput_sys::api::ffi::Lane_ToInertialPosition(self.lane, lane_position.lp.as_ref().expect("")),
}
}
/// Determines the LanePosition corresponding to InertialPosition `inertial_position`.
/// The LanePosition is expected to be contained within the lane's boundaries.
/// See [Lane::to_segment_position] method.
///
/// This method guarantees that its result satisfies the condition that
/// `to_inertial_position(result.lane_position)` is within `linear_tolerance()`
/// of `result.nearest_position`.
pub fn to_lane_position(&self, inertial_position: &InertialPosition) -> LanePositionResult {
let lpr = maliput_sys::api::ffi::Lane_ToLanePosition(self.lane, inertial_position.ip.as_ref().expect(""));
LanePositionResult {
lane_position: LanePosition {
lp: maliput_sys::api::ffi::LanePositionResult_road_position(&lpr),
},
nearest_position: InertialPosition {
ip: maliput_sys::api::ffi::LanePositionResult_nearest_position(&lpr),
},
distance: maliput_sys::api::ffi::LanePositionResult_distance(&lpr),
}
}
/// Determines the LanePosition corresponding to InertialPosition `inertial_position`.
/// The LanePosition is expected to be contained within the segment's boundaries.
/// See [Lane::to_lane_position] method.
///
/// This method guarantees that its result satisfies the condition that
/// `to_inertial_position(result.lane_position)` is within `linear_tolerance()`
/// of `result.nearest_position`.
pub fn to_segment_position(&self, inertial_position: &InertialPosition) -> LanePositionResult {
let spr = maliput_sys::api::ffi::Lane_ToSegmentPosition(self.lane, inertial_position.ip.as_ref().expect(""));
LanePositionResult {
lane_position: LanePosition {
lp: maliput_sys::api::ffi::LanePositionResult_road_position(&spr),
},
nearest_position: InertialPosition {
ip: maliput_sys::api::ffi::LanePositionResult_nearest_position(&spr),
},
distance: maliput_sys::api::ffi::LanePositionResult_distance(&spr),
}
}
/// Get the lane bounds of the `Lane` at the given `s`.
pub fn lane_bounds(&self, s: f64) -> RBounds {
let bounds = maliput_sys::api::ffi::Lane_lane_bounds(self.lane, s);
RBounds::new(bounds.min(), bounds.max())
}
/// Get the segment bounds of the `Lane` at the given `s`.
pub fn segment_bounds(&self, s: f64) -> RBounds {
let bounds = maliput_sys::api::ffi::Lane_segment_bounds(self.lane, s);
RBounds::new(bounds.min(), bounds.max())
}
/// Get the elevation bounds of the `Lane` at the given `s` and `r`.
pub fn elevation_bounds(&self, s: f64, r: f64) -> HBounds {
let bounds = maliput_sys::api::ffi::Lane_elevation_bounds(self.lane, s, r);
HBounds::new(bounds.min(), bounds.max())
}
/// Computes derivatives of [LanePosition] given a velocity vector `velocity`.
/// `velocity` is a isometric velocity vector oriented in the `Lane`-frame
/// at `position`.
///
/// Returns `Lane`-frame derivatives packed into a [LanePosition] struct.
pub fn eval_motion_derivatives(&self, lane_position: &LanePosition, velocity: &IsoLaneVelocity) -> LanePosition {
LanePosition {
lp: maliput_sys::api::ffi::Lane_EvalMotionDerivatives(
self.lane,
lane_position.lp.as_ref().expect(""),
velocity.sigma_v,
velocity.rho_v,
velocity.eta_v,
),
}
}
/// Returns the lane's BranchPoint for the specified end.
pub fn get_branch_point(&self, end: &LaneEnd) -> BranchPoint {
assert! {
end == &LaneEnd::Start(self.clone()) || end == &LaneEnd::Finish(self.clone()),
"LaneEnd must be an end of this lane {:?}",
end
}
BranchPoint {
branch_point: unsafe {
maliput_sys::api::ffi::Lane_GetBranchPoint(self.lane, end == &LaneEnd::Start(self.clone()))
.as_ref()
.expect("Underlying BranchPoint is null")
},
}
}
/// Returns the set of LaneEnd's which connect with this lane on the
/// same side of the BranchPoint at `end`. At a minimum,
/// this set will include this Lane.
pub fn get_confluent_branches(&self, end: &LaneEnd) -> LaneEndSet {
assert! {
end == &LaneEnd::Start(self.clone()) || end == &LaneEnd::Finish(self.clone()),
"LaneEnd must be an end of this lane {:?}",
end
}
LaneEndSet {
lane_end_set: unsafe {
maliput_sys::api::ffi::Lane_GetConfluentBranches(self.lane, end == &LaneEnd::Start(self.clone()))
.as_ref()
.expect("Underlying LaneEndSet is null")
},
}
}
/// Returns the set of LaneEnd's which continue onward from this lane at the
/// BranchPoint at `end`.
pub fn get_ongoing_branches(&self, end: &LaneEnd) -> LaneEndSet {
assert! {
end == &LaneEnd::Start(self.clone()) || end == &LaneEnd::Finish(self.clone()),
"LaneEnd must be an end of this lane {:?}",
end
}
LaneEndSet {
lane_end_set: unsafe {
maliput_sys::api::ffi::Lane_GetOngoingBranches(self.lane, end == &LaneEnd::Start(self.clone()))
.as_ref()
.expect("Underlying LaneEndSet is null")
},
}
}
/// Returns the default ongoing LaneEnd connected at `end`,
/// or None if no default branch has been established.
pub fn get_default_branch(&self, end: &LaneEnd) -> Option<LaneEnd> {
assert! {
end == &LaneEnd::Start(self.clone()) || end == &LaneEnd::Finish(self.clone()),
"LaneEnd must be an end of this lane {:?}",
end
}
let lane_end = maliput_sys::api::ffi::Lane_GetDefaultBranch(self.lane, end == &LaneEnd::Start(self.clone()));
match lane_end.is_null() {
true => None,
false => {
let lane_end_ref: &maliput_sys::api::ffi::LaneEnd =
lane_end.as_ref().expect("Underlying LaneEnd is null");
let is_start = maliput_sys::api::ffi::LaneEnd_is_start(lane_end_ref);
let lane_ref = unsafe {
maliput_sys::api::ffi::LaneEnd_lane(lane_end_ref)
.as_ref()
.expect("Underlying LaneEnd is null")
};
match is_start {
true => Some(LaneEnd::Start(Lane { lane: lane_ref })),
false => Some(LaneEnd::Finish(Lane { lane: lane_ref })),
}
}
}
}
/// Check if the `Lane` contains the given `LanePosition`.
pub fn contains(&self, lane_position: &LanePosition) -> bool {
self.lane.Contains(lane_position.lp.as_ref().expect(""))
}
}
/// Copy trait for Lane.
/// A reference to the Lane is copied.
impl Clone for Lane<'_> {
fn clone(&self) -> Self {
Lane { lane: self.lane }
}
}
/// A Segment represents a bundle of adjacent Lanes which share a
/// continuously traversable road surface. Every [LanePosition] on a
/// given [Lane] of a Segment has a corresponding [LanePosition] on each
/// other [Lane], all with the same height-above-surface h, that all
/// map to the same GeoPoint in 3-space.
///
/// Segments are grouped by [Junction].
///
/// Wrapper around C++ implementation `maliput::api::Segment`.
pub struct Segment<'a> {
segment: &'a maliput_sys::api::ffi::Segment,
}
impl<'a> Segment<'a> {
/// Get the id of the `Segment` as a string.
pub fn id(&self) -> String {
maliput_sys::api::ffi::Segment_id(self.segment)
}
/// Returns the [Junction] to which this Segment belongs.
pub fn junction(&self) -> Junction {
unsafe {
Junction {
junction: self.segment.junction().as_ref().expect(""),
}
}
}
/// Get the number of lanes in the `Segment`.
pub fn num_lanes(&self) -> i32 {
self.segment.num_lanes()
}
/// Get the lane at the given `index`.
pub fn lane(&self, index: i32) -> Lane {
unsafe {
Lane {
lane: self.segment.lane(index).as_ref().expect(""),
}
}
}
}
/// A Junction is a closed set of [Segment]s which have physically
/// coplanar road surfaces, in the sense that [RoadPosition]s with the
/// same h value (height above surface) in the domains of two [Segment]s
/// map to the same [InertialPosition]. The [Segment]s need not be directly
/// connected to one another in the network topology.
///
/// Junctions are grouped by [RoadGeometry].
///
/// Wrapper around C++ implementation `maliput::api::Segment`.
pub struct Junction<'a> {
junction: &'a maliput_sys::api::ffi::Junction,
}
impl<'a> Junction<'a> {
/// Get the id of the `Junction` as a string.
pub fn id(&self) -> String {
maliput_sys::api::ffi::Junction_id(self.junction)
}
/// Get the road geometry of the `Junction`.
pub fn road_geometry(&self) -> RoadGeometry {
unsafe {
RoadGeometry {
rg: self.junction.road_geometry().as_ref().expect(""),
}
}
}
/// Get the number of segments in the `Junction`.
pub fn num_segments(&self) -> i32 {
self.junction.num_segments()
}
/// Get the segment at the given `index`.
pub fn segment(&self, index: i32) -> Segment {
unsafe {
Segment {
segment: self.junction.segment(index).as_ref().expect(""),
}
}
}
}
/// A maliput::api::RoadPosition
/// Wrapper around C++ implementation `maliput::api::RoadPosition`.
pub struct RoadPosition {
rp: cxx::UniquePtr<maliput_sys::api::ffi::RoadPosition>,
}
impl RoadPosition {
/// Create a new `RoadPosition` with the given `lane` and `lane_pos`.
pub fn new(lane: &Lane, lane_pos: &LanePosition) -> RoadPosition {
unsafe {
RoadPosition {
rp: maliput_sys::api::ffi::RoadPosition_new(lane.lane, &lane_pos.lp),
}
}
}
/// Get the inertial position of the `RoadPosition` via doing a Lane::ToInertialPosition query call.
pub fn to_inertial_position(&self) -> InertialPosition {
InertialPosition {
ip: maliput_sys::api::ffi::RoadPosition_ToInertialPosition(&self.rp),
}
}
/// Get the lane of the `RoadPosition`.
pub fn lane(&self) -> Lane {
unsafe {
Lane {
lane: maliput_sys::api::ffi::RoadPosition_lane(&self.rp).as_ref().expect(""),
}
}
}
/// Get the lane position of the `RoadPosition`.
pub fn pos(&self) -> LanePosition {
LanePosition {
lp: maliput_sys::api::ffi::RoadPosition_pos(&self.rp),
}
}
}
/// Represents the result of a RoadPosition query.
pub struct RoadPositionResult {
pub road_position: RoadPosition,
pub nearest_position: InertialPosition,
pub distance: f64,
}
impl RoadPositionResult {
/// Create a new `RoadPositionResult` with the given `road_position`, `nearest_position`, and `distance`.
pub fn new(road_position: RoadPosition, nearest_position: InertialPosition, distance: f64) -> RoadPositionResult {
RoadPositionResult {
road_position,
nearest_position,
distance,
}
}
}
/// Represents the result of a LanePosition query.
pub struct LanePositionResult {
pub lane_position: LanePosition,
pub nearest_position: InertialPosition,
pub distance: f64,
}
impl LanePositionResult {
/// Create a new `LanePositionResult` with the given `lane_position`, `nearest_position`, and `distance`.
pub fn new(lane_position: LanePosition, nearest_position: InertialPosition, distance: f64) -> LanePositionResult {
LanePositionResult {
lane_position,
nearest_position,
distance,
}
}
}
/// A maliput::api::Rotation
/// A wrapper around C++ implementation `maliput::api::Rotation`.
pub struct Rotation {
r: cxx::UniquePtr<maliput_sys::api::ffi::Rotation>,
}
impl Default for Rotation {
fn default() -> Self {
Self::new()
}
}
impl Rotation {
/// Create a new `Rotation`.
pub fn new() -> Rotation {
Rotation {
r: maliput_sys::api::ffi::Rotation_new(),
}
}
/// Create a new `Rotation` from a `Quaternion`.
pub fn from_quat(q: &Quaternion) -> Rotation {
let q_ffi = maliput_sys::math::ffi::Quaternion_new(q.w(), q.x(), q.y(), q.z());
Rotation {
r: maliput_sys::api::ffi::Rotation_from_quat(&q_ffi),
}
}
/// Create a new `Rotation` from a `RollPitchYaw`.
pub fn from_rpy(rpy: &RollPitchYaw) -> Rotation {
let rpy_ffi = maliput_sys::math::ffi::RollPitchYaw_new(rpy.roll_angle(), rpy.pitch_angle(), rpy.yaw_angle());
Rotation {
r: maliput_sys::api::ffi::Rotation_from_rpy(&rpy_ffi),
}
}
/// Get the roll of the `Rotation`.
pub fn roll(&self) -> f64 {
self.r.roll()
}
/// Get the pitch of the `Rotation`.
pub fn pitch(&self) -> f64 {
self.r.pitch()
}
/// Get the yaw of the `Rotation`.
pub fn yaw(&self) -> f64 {
self.r.yaw()
}
/// Get a quaternion representation of the `Rotation`.
pub fn quat(&self) -> Quaternion {
let q_ffi = self.r.quat();
Quaternion::new(q_ffi.w(), q_ffi.x(), q_ffi.y(), q_ffi.z())
}
/// Get a roll-pitch-yaw representation of the `Rotation`.
pub fn rpy(&self) -> RollPitchYaw {
let rpy_ffi = maliput_sys::api::ffi::Rotation_rpy(&self.r);
RollPitchYaw::new(rpy_ffi.roll_angle(), rpy_ffi.pitch_angle(), rpy_ffi.yaw_angle())
}
/// Set the `Rotation` from a `Quaternion`.
pub fn set_quat(&mut self, q: &Quaternion) {
let q_ffi = maliput_sys::math::ffi::Quaternion_new(q.w(), q.x(), q.y(), q.z());
maliput_sys::api::ffi::Rotation_set_quat(self.r.pin_mut(), &q_ffi);
}
/// Get the matrix representation of the `Rotation`.
pub fn matrix(&self) -> Matrix3 {
let matrix_ffi: cxx::UniquePtr<maliput_sys::math::ffi::Matrix3> =
maliput_sys::api::ffi::Rotation_matrix(&self.r);
let row_0 = maliput_sys::math::ffi::Matrix3_row(matrix_ffi.as_ref().expect(""), 0);
let row_1 = maliput_sys::math::ffi::Matrix3_row(matrix_ffi.as_ref().expect(""), 1);
let row_2 = maliput_sys::math::ffi::Matrix3_row(matrix_ffi.as_ref().expect(""), 2);
Matrix3::new(
Vector3::new(row_0.x(), row_0.y(), row_0.z()),
Vector3::new(row_1.x(), row_1.y(), row_1.z()),
Vector3::new(row_2.x(), row_2.y(), row_2.z()),
)
}
/// Get the distance between two `Rotation`.
pub fn distance(&self, other: &Rotation) -> f64 {
self.r.Distance(&other.r)
}
/// Apply the `Rotation` to an `InertialPosition`.
pub fn apply(&self, v: &InertialPosition) -> InertialPosition {
InertialPosition {
ip: maliput_sys::api::ffi::Rotation_Apply(&self.r, &v.ip),
}
}
/// Get the reverse of the `Rotation`.
pub fn reverse(&self) -> Rotation {
Rotation {
r: maliput_sys::api::ffi::Rotation_Reverse(&self.r),
}
}
}
/// Directed, inclusive longitudinal (s value) range from s0 to s1.
/// Wrapper around C++ implementation `maliput::api::SRange`.
pub struct SRange {
s_range: cxx::UniquePtr<maliput_sys::api::ffi::SRange>,
}
impl SRange {
/// Create a new `SRange` with the given `s0` and `s1`.
pub fn new(s0: f64, s1: f64) -> SRange {
SRange {
s_range: maliput_sys::api::ffi::SRange_new(s0, s1),
}
}
/// Get the s0 of the `SRange`.
pub fn s0(&self) -> f64 {
self.s_range.s0()
}
/// Get the s1 of the `SRange`.
pub fn s1(&self) -> f64 {
self.s_range.s1()
}
/// Set the s0 of the `SRange`.
pub fn set_s0(&mut self, s0: f64) {
self.s_range.as_mut().expect("Underlying SRange is null").set_s0(s0);
}
/// Set the s1 of the `SRange`.
pub fn set_s1(&mut self, s1: f64) {
self.s_range.as_mut().expect("Underlying SRange is null").set_s1(s1);
}
/// Get the size of the `SRange`.
pub fn size(&self) -> f64 {
self.s_range.size()
}
/// Returns true When this SRange is in the direction of +s.
pub fn with_s(&self) -> bool {
self.s_range.WithS()
}
/// Determines whether this SRange intersects with `s_range`.
pub fn intersects(&self, s_range: &SRange, tolerance: f64) -> bool {
self.s_range.Intersects(&s_range.s_range, tolerance)
}
/// Determines whether this SRange contains `s_range`.
pub fn contains(&self, s_range: &SRange, tolerance: f64) -> bool {
self.s_range.Contains(&s_range.s_range, tolerance)
}
/// Get the intersection of this SRange with `s_range`.
/// Returns None if the intersection is empty.
pub fn get_intersection(&self, s_range: &SRange, tolerance: f64) -> Option<SRange> {
let intersection = maliput_sys::api::ffi::SRange_GetIntersection(&self.s_range, &s_range.s_range, tolerance);
match intersection.is_null() {
true => None,
false => Some(SRange { s_range: intersection }),
}
}
}
/// Directed longitudinal range of a specific Lane, identified by a LaneId.
/// Wrapper around C++ implementation `maliput::api::LaneSRange`.
pub struct LaneSRange {
pub(crate) lane_s_range: cxx::UniquePtr<maliput_sys::api::ffi::LaneSRange>,
}
impl LaneSRange {
/// Create a new `LaneSRange` with the given `lane_id` and `s_range`.
pub fn new(lane_id: &String, s_range: &SRange) -> LaneSRange {
LaneSRange {
lane_s_range: maliput_sys::api::ffi::LaneSRange_new(lane_id, &s_range.s_range),
}
}
/// Get the lane id of the `LaneSRange`.
pub fn lane_id(&self) -> String {
maliput_sys::api::ffi::LaneSRange_lane_id(&self.lane_s_range)
}
/// Get the s range of the `LaneSRange`.
pub fn s_range(&self) -> SRange {
SRange {
s_range: maliput_sys::api::ffi::LaneSRange_s_range(&self.lane_s_range),
}
}
/// Get the length of the `LaneSRange`.
pub fn length(&self) -> f64 {
self.lane_s_range.length()
}
/// Determines whether this LaneSRange intersects with `lane_s_range`.
pub fn intersects(&self, lane_s_range: &LaneSRange, tolerance: f64) -> bool {
self.lane_s_range.Intersects(&lane_s_range.lane_s_range, tolerance)
}
/// Determines whether this LaneSRange contains `lane_s_range`.
pub fn contains(&self, lane_s_range: &LaneSRange, tolerance: f64) -> bool {
self.lane_s_range.Contains(&lane_s_range.lane_s_range, tolerance)
}
/// Get the intersection of this LaneSRange with `lane_s_range`.
pub fn get_intersection(&self, lane_s_range: &LaneSRange, tolerance: f64) -> Option<LaneSRange> {
let intersection = maliput_sys::api::ffi::LaneSRange_GetIntersection(
&self.lane_s_range,
&lane_s_range.lane_s_range,
tolerance,
);
match intersection.is_null() {
true => None,
false => Some(LaneSRange {
lane_s_range: intersection,
}),
}
}
}
/// A route, possibly spanning multiple (end-to-end) lanes.
///
/// The sequence of [LaneSRange]s should be contiguous by either presenting
/// laterally adjacent [LaneSRange]s, or consecutive [LaneSRange]s. (In other words,
/// taken as a Lane-space path with r=0 and h=0, it should present a
/// G1-continuous curve.)
pub struct LaneSRoute {
lane_s_route: cxx::UniquePtr<maliput_sys::api::ffi::LaneSRoute>,
}
impl LaneSRoute {
/// Create a new `LaneSRoute` with the given `ranges`.
///
/// ## Arguments
/// * `ranges` - A vector of [LaneSRange] to create the [LaneSRoute].
pub fn new(ranges: Vec<LaneSRange>) -> LaneSRoute {
let mut lane_s_ranges_cpp = cxx::CxxVector::new();
for range in &ranges {
lane_s_ranges_cpp
.as_mut()
.unwrap()
.push(maliput_sys::api::ffi::ConstLaneSRangeRef {
lane_s_range: &range.lane_s_range,
});
}
LaneSRoute {
lane_s_route: maliput_sys::api::ffi::LaneSRoute_new(&lane_s_ranges_cpp),
}
}
/// Returns the sequence of [LaneSRange]s.
pub fn ranges(&self) -> Vec<LaneSRange> {
let mut ranges = Vec::new();
let lane_s_ranges = self.lane_s_route.ranges();
for range in lane_s_ranges {
ranges.push(LaneSRange {
lane_s_range: maliput_sys::api::ffi::LaneSRange_new(
&maliput_sys::api::ffi::LaneSRange_lane_id(range),
maliput_sys::api::ffi::LaneSRange_s_range(range).as_ref().expect(""),
),
})
}
ranges
}
/// Computes the accumulated length of all [LaneSRange]s.
pub fn length(&self) -> f64 {
self.lane_s_route.length()
}
/// Determines whether this LaneSRoute intersects with `other`.
///
/// ## Arguments
/// * `other` - The other LaneSRoute to check for intersection.
/// * `tolerance` - The tolerance to use for intersection checks.
///
/// ## Returns
/// * `true` if the two LaneSRoute intersect, `false` otherwise.
pub fn intersects(&self, other: &LaneSRoute, tolerance: f64) -> bool {
self.lane_s_route.Intersects(&other.lane_s_route, tolerance)
}
}
/// A specific endpoint of a specific Lane.
/// This is analogous to the C++ maliput::api::LaneEnd implementation.
pub enum LaneEnd<'a> {
/// The start of the Lane. ("s == 0")
Start(Lane<'a>),
/// The end of the Lane. ("s == length")
Finish(Lane<'a>),
}
impl LaneEnd<'_> {
/// Get the Lane of the `LaneEnd`.
pub fn lane(&self) -> &Lane {
match self {
LaneEnd::Start(lane) => lane,
LaneEnd::Finish(lane) => lane,
}
}
}
impl PartialEq for LaneEnd<'_> {
fn eq(&self, other: &Self) -> bool {
match self {
LaneEnd::Start(lane) => match other {
LaneEnd::Start(other_lane) => lane.id() == other_lane.id(),
_ => false,
},
LaneEnd::Finish(lane) => match other {
LaneEnd::Finish(other_lane) => lane.id() == other_lane.id(),
_ => false,
},
}
}
}
impl Eq for LaneEnd<'_> {}
impl std::fmt::Display for LaneEnd<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
LaneEnd::Start(lane) => write!(f, "LaneEnd::Start({})", lane.id()),
LaneEnd::Finish(lane) => write!(f, "LaneEnd::Finish({})", lane.id()),
}
}
}
impl std::fmt::Debug for LaneEnd<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match self {
LaneEnd::Start(lane) => write!(f, "LaneEnd::Start({})", lane.id()),
LaneEnd::Finish(lane) => write!(f, "LaneEnd::Finish({})", lane.id()),
}
}
}
/// A set of LaneEnds.
pub struct LaneEndSet<'a> {
lane_end_set: &'a maliput_sys::api::ffi::LaneEndSet,
}
impl<'a> LaneEndSet<'a> {
/// Obtain the size of the LaneEndSet.
pub fn size(&self) -> i32 {
self.lane_end_set.size()
}
/// Get the LaneEnd at the given index.
pub fn get(&self, index: i32) -> LaneEnd {
let lane_end = self.lane_end_set.get(index);
// Obtain end type and lane reference.
let is_start = maliput_sys::api::ffi::LaneEnd_is_start(lane_end);
let lane_ref = unsafe {
maliput_sys::api::ffi::LaneEnd_lane(lane_end)
.as_ref()
.expect("Underlying LaneEnd is null")
};
// Create a LaneEnd enum variant.
match is_start {
true => LaneEnd::Start(Lane { lane: lane_ref }),
false => LaneEnd::Finish(Lane { lane: lane_ref }),
}
}
}
/// A BranchPoint is a node in the network of a RoadGeometry at which
/// Lanes connect to one another. A BranchPoint is a collection of LaneEnds
/// specifying the Lanes (and, in particular, which ends of the Lanes) are
/// connected at the BranchPoint.
///
/// LaneEnds participating in a BranchPoint are grouped into two sets,
/// arbitrarily named "A-side" and "B-side". LaneEnds on the same "side"
/// have coincident into-the-lane tangent vectors, which are anti-parallel
/// to those of LaneEnds on the other side.
pub struct BranchPoint<'a> {
branch_point: &'a maliput_sys::api::ffi::BranchPoint,
}
impl<'a> BranchPoint<'a> {
/// Get the id of the `BranchPoint` as a string.
pub fn id(&self) -> String {
maliput_sys::api::ffi::BranchPoint_id(self.branch_point)
}
pub fn road_geometry(&self) -> RoadGeometry {
unsafe {
RoadGeometry {
rg: self.branch_point.road_geometry().as_ref().expect(""),
}
}
}
/// Returns the set of LaneEnds on the same side as the given LaneEnd.
/// E.g: For a T-junction, this would return the set of LaneEnds on the merging side.
pub fn get_confluent_branches(&self, end: &LaneEnd) -> LaneEndSet {
let lane_end_set_ptr = self.branch_point.GetConfluentBranches(
BranchPoint::from_lane_end_to_ffi(end)
.as_ref()
.expect("Underlying LaneEnd is null"),
);
LaneEndSet {
lane_end_set: unsafe { lane_end_set_ptr.as_ref().expect("Underlying LaneEndSet is null") },
}
}
/// Returns the set of LaneEnds on the opposite side as the given LaneEnd.
/// E.g: For a T-junction, this would return the LaneEnds which end flows into the junction.
pub fn get_ongoing_branches(&self, end: &LaneEnd) -> LaneEndSet {
let lane_end_set_ptr = self.branch_point.GetOngoingBranches(
BranchPoint::from_lane_end_to_ffi(end)
.as_ref()
.expect("Underlying LaneEnd is null"),
);
LaneEndSet {
lane_end_set: unsafe { lane_end_set_ptr.as_ref().expect("Underlying LaneEndSet is null") },
}
}
/// Returns the default ongoing branch (if any) for the given `end`.
/// This typically represents what would be considered "continuing
/// through-traffic" from `end` (e.g., as opposed to a branch executing
/// a turn).
///
/// If `end` has no default-branch at this BranchPoint, the return
/// value will be None.
pub fn get_default_branch(&self, end: &LaneEnd) -> Option<LaneEnd> {
let lane_end = maliput_sys::api::ffi::BranchPoint_GetDefaultBranch(
self.branch_point,
BranchPoint::from_lane_end_to_ffi(end)
.as_ref()
.expect("Underlying LaneEnd is null"),
);
match lane_end.is_null() {
true => None,
false => {
let lane_end_ref: &maliput_sys::api::ffi::LaneEnd =
lane_end.as_ref().expect("Underlying LaneEnd is null");
let is_start = maliput_sys::api::ffi::LaneEnd_is_start(lane_end_ref);
let lane_ref = unsafe {
maliput_sys::api::ffi::LaneEnd_lane(lane_end_ref)
.as_ref()
.expect("Underlying LaneEnd is null")
};
match is_start {
true => Some(LaneEnd::Start(Lane { lane: lane_ref })),
false => Some(LaneEnd::Finish(Lane { lane: lane_ref })),
}
}
}
}
/// Returns the set of LaneEnds grouped together on the "A-side".
pub fn get_a_side(&self) -> LaneEndSet {
let lane_end_set_ptr = self.branch_point.GetASide();
LaneEndSet {
lane_end_set: unsafe { lane_end_set_ptr.as_ref().expect("Underlying LaneEndSet is null") },
}
}
/// Returns the set of LaneEnds grouped together on the "B-side".
pub fn get_b_side(&self) -> LaneEndSet {
let lane_end_set_ptr = self.branch_point.GetBSide();
LaneEndSet {
lane_end_set: unsafe { lane_end_set_ptr.as_ref().expect("Underlying LaneEndSet is null") },
}
}
/// Convert LaneEnd enum to LaneEnd ffi.
fn from_lane_end_to_ffi(end: &LaneEnd) -> cxx::UniquePtr<maliput_sys::api::ffi::LaneEnd> {
match end {
LaneEnd::Start(lane) => unsafe { maliput_sys::api::ffi::LaneEnd_new(lane.lane, true) },
LaneEnd::Finish(lane) => unsafe { maliput_sys::api::ffi::LaneEnd_new(lane.lane, false) },
}
}
}
/// An abstract convenience class that aggregates information pertaining to an
/// intersection. Its primary purpose is to serve as a single source of this
/// information and to remove the need for users to query numerous disparate
/// data structures and state providers.
pub struct Intersection<'a> {
intersection: &'a mut maliput_sys::api::ffi::Intersection,
}
impl<'a> Intersection<'a> {
/// Get the id of the `Intersection` as a string.
pub fn id(&self) -> String {
maliput_sys::api::ffi::Intersection_id(self.intersection)
}
}
/// A book of Intersections.
pub struct IntersectionBook<'a> {
intersection_book: &'a mut maliput_sys::api::ffi::IntersectionBook,
}
impl<'a> IntersectionBook<'a> {
/// Gets a list of all Intersections within this book.
pub fn get_intersections(&mut self) -> Vec<Intersection> {
let book_pin = unsafe { std::pin::Pin::new_unchecked(&mut *self.intersection_book) };
let intersections_cpp = maliput_sys::api::ffi::IntersectionBook_GetIntersections(book_pin);
unsafe {
intersections_cpp
.into_iter()
.map(|intersection| Intersection {
intersection: intersection
.intersection
.as_mut()
.expect("Underlying Intersection is null"),
})
.collect::<Vec<Intersection>>()
}
}
/// Gets the specified Intersection.
///
/// ## Arguments
/// * `id` - The id of the Intersection to get.
///
/// ## Returns
/// * An `Option<Intersection>`
/// * Some(Intersection) - The Intersection with the specified id.
/// * None - If the Intersection with the specified id does not exist.
pub fn get_intersection(&mut self, id: &str) -> Option<Intersection> {
let book_pin = unsafe { std::pin::Pin::new_unchecked(&mut *self.intersection_book) };
let intersection_option = unsafe {
maliput_sys::api::ffi::IntersectionBook_GetIntersection(book_pin, &String::from(id))
.intersection
.as_mut()
};
match &intersection_option {
None => None,
Some(_) => Some(Intersection {
intersection: intersection_option.expect("Underlying Intersection is null"),
}),
}
}
}
mod tests {
mod lane_position {
#[test]
fn lane_position_new() {
let lane_pos = crate::api::LanePosition::new(1.0, 2.0, 3.0);
assert_eq!(lane_pos.s(), 1.0);
assert_eq!(lane_pos.r(), 2.0);
assert_eq!(lane_pos.h(), 3.0);
}
#[test]
fn equality() {
let v = crate::api::LanePosition::new(1.0, 2.0, 3.0);
let w = crate::api::LanePosition::new(1.0, 2.0, 3.0);
assert_eq!(v, w);
let z = crate::api::LanePosition::new(4.0, 5.0, 6.0);
assert_ne!(v, z);
}
#[test]
fn set_s() {
let mut lane_pos = crate::api::LanePosition::new(1.0, 2.0, 3.0);
lane_pos.set_s(4.0);
assert_eq!(lane_pos.s(), 4.0);
}
#[test]
fn set_r() {
let mut lane_pos = crate::api::LanePosition::new(1.0, 2.0, 3.0);
lane_pos.set_r(4.0);
assert_eq!(lane_pos.r(), 4.0);
}
#[test]
fn set_h() {
let mut lane_pos = crate::api::LanePosition::new(1.0, 2.0, 3.0);
lane_pos.set_h(4.0);
assert_eq!(lane_pos.h(), 4.0);
}
#[test]
fn set_srh() {
use crate::math::Vector3;
let mut lane_pos = crate::api::LanePosition::new(1.0, 2.0, 3.0);
let vector = Vector3::new(4.0, 5.0, 6.0);
lane_pos.set_srh(&vector);
assert_eq!(lane_pos.s(), 4.0);
assert_eq!(lane_pos.r(), 5.0);
assert_eq!(lane_pos.h(), 6.0);
}
}
mod inertial_position {
#[test]
fn inertial_position_new() {
let inertial_pos = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
assert_eq!(inertial_pos.x(), 1.0);
assert_eq!(inertial_pos.y(), 2.0);
assert_eq!(inertial_pos.z(), 3.0);
}
#[test]
fn equality() {
let v = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
let w = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
assert_eq!(v, w);
let z = crate::api::InertialPosition::new(4.0, 5.0, 6.0);
assert_ne!(v, z);
}
#[test]
fn set_x() {
let mut inertial_pos = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
inertial_pos.set_x(4.0);
assert_eq!(inertial_pos.x(), 4.0);
}
#[test]
fn set_y() {
let mut inertial_pos = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
inertial_pos.set_y(4.0);
assert_eq!(inertial_pos.y(), 4.0);
}
#[test]
fn set_z() {
let mut inertial_pos = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
inertial_pos.set_z(4.0);
assert_eq!(inertial_pos.z(), 4.0);
}
#[test]
fn set_xyz() {
use crate::math::Vector3;
let mut inertial_pos = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
let vector = Vector3::new(4.0, 5.0, 6.0);
inertial_pos.set_xyz(&vector);
assert_eq!(inertial_pos.x(), 4.0);
assert_eq!(inertial_pos.y(), 5.0);
assert_eq!(inertial_pos.z(), 6.0);
}
#[test]
fn xyz() {
let inertial_pos = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
assert_eq!(inertial_pos.xyz(), crate::math::Vector3::new(1.0, 2.0, 3.0));
}
#[test]
fn length() {
let inertial_pos = crate::api::InertialPosition::new(3.0, 0.0, 4.0);
assert_eq!(inertial_pos.length(), 5.0);
}
#[test]
fn distance() {
let inertial_pos1 = crate::api::InertialPosition::new(1.0, 1.0, 1.0);
let inertial_pos2 = crate::api::InertialPosition::new(5.0, 1.0, 1.0);
assert_eq!(inertial_pos1.distance(&inertial_pos2), 4.0);
}
#[test]
fn str() {
let inertial_pos = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
assert_eq!(inertial_pos.to_string(), "(x = 1, y = 2, z = 3)");
}
#[test]
fn add_operation() {
let inertial_pos1 = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
let inertial_pos2 = crate::api::InertialPosition::new(4.0, 5.0, 6.0);
let inertial_pos3 = inertial_pos1 + inertial_pos2;
assert_eq!(inertial_pos3.x(), 5.0);
assert_eq!(inertial_pos3.y(), 7.0);
assert_eq!(inertial_pos3.z(), 9.0);
}
#[test]
fn sub_operation() {
let inertial_pos1 = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
let inertial_pos2 = crate::api::InertialPosition::new(4.0, 5.0, 6.0);
let inertial_pos3 = inertial_pos1 - inertial_pos2;
assert_eq!(inertial_pos3.x(), -3.0);
assert_eq!(inertial_pos3.y(), -3.0);
assert_eq!(inertial_pos3.z(), -3.0);
}
#[test]
fn mul_scalar_operation() {
let inertial_pos1 = crate::api::InertialPosition::new(1.0, 2.0, 3.0);
let inertial_pos2 = inertial_pos1 * 2.0;
assert_eq!(inertial_pos2.x(), 2.0);
assert_eq!(inertial_pos2.y(), 4.0);
assert_eq!(inertial_pos2.z(), 6.0);
}
}
mod rotation {
#[test]
fn rotation_new() {
let rotation = crate::api::Rotation::new();
assert_eq!(rotation.roll(), 0.0);
assert_eq!(rotation.pitch(), 0.0);
assert_eq!(rotation.yaw(), 0.0);
}
#[test]
fn from_quat() {
let quat = crate::math::Quaternion::new(1.0, 0.0, 0.0, 0.0);
let rotation = crate::api::Rotation::from_quat(&quat);
assert_eq!(rotation.roll(), 0.0);
assert_eq!(rotation.pitch(), 0.0);
assert_eq!(rotation.yaw(), 0.0);
}
#[test]
fn from_rpy() {
let rpy = crate::math::RollPitchYaw::new(0.0, 0.0, 0.0);
let rotation = crate::api::Rotation::from_rpy(&rpy);
assert_eq!(rotation.roll(), 0.0);
assert_eq!(rotation.pitch(), 0.0);
assert_eq!(rotation.yaw(), 0.0);
}
#[test]
fn set_quat() {
let mut rotation = crate::api::Rotation::new();
let quat = crate::math::Quaternion::new(1.0, 0.0, 0.0, 0.0);
rotation.set_quat(&quat);
assert_eq!(rotation.roll(), 0.0);
assert_eq!(rotation.pitch(), 0.0);
assert_eq!(rotation.yaw(), 0.0);
}
#[test]
fn matrix() {
let rotation = crate::api::Rotation::new();
let matrix = rotation.matrix();
assert_eq!(matrix.row(0), crate::math::Vector3::new(1.0, 0.0, 0.0));
assert_eq!(matrix.row(1), crate::math::Vector3::new(0.0, 1.0, 0.0));
assert_eq!(matrix.row(2), crate::math::Vector3::new(0.0, 0.0, 1.0));
}
}
mod s_range {
#[test]
fn s_range_new() {
let s_range = crate::api::SRange::new(1.0, 2.0);
assert_eq!(s_range.s0(), 1.0);
assert_eq!(s_range.s1(), 2.0);
}
#[test]
fn s_range_api() {
let s_range_1 = crate::api::SRange::new(1.0, 3.0);
let s_range_2 = crate::api::SRange::new(2.0, 4.0);
assert_eq!(s_range_1.size(), 2.0);
assert!(s_range_1.with_s());
assert!(s_range_1.intersects(&s_range_2, 0.0));
assert!(!s_range_1.contains(&s_range_2, 0.0));
}
#[test]
fn s_range_setters() {
let mut s_range = crate::api::SRange::new(0.0, 4.0);
s_range.set_s0(1.0);
s_range.set_s1(3.0);
assert_eq!(s_range.s0(), 1.0);
assert_eq!(s_range.s1(), 3.0);
}
#[test]
fn s_range_get_intersection_with_intersection() {
let s_range_1 = crate::api::SRange::new(1.0, 3.0);
let s_range_2 = crate::api::SRange::new(2.0, 4.0);
let intersection = s_range_1.get_intersection(&s_range_2, 0.0);
assert!(intersection.is_some());
let intersection = intersection.unwrap();
assert_eq!(intersection.s0(), 2.0);
assert_eq!(intersection.s1(), 3.0);
}
#[test]
fn s_range_get_intersection_with_no_intersection() {
let s_range_1 = crate::api::SRange::new(1.0, 2.0);
let s_range_2 = crate::api::SRange::new(3.0, 4.0);
let intersection = s_range_1.get_intersection(&s_range_2, 0.0);
assert!(intersection.is_none());
}
}
mod lane_s_range {
#[test]
fn lane_s_range_new() {
let lane_s_range =
crate::api::LaneSRange::new(&String::from("lane_test"), &crate::api::SRange::new(1.0, 2.0));
assert_eq!(lane_s_range.lane_id(), "lane_test");
assert_eq!(lane_s_range.s_range().s0(), 1.0);
assert_eq!(lane_s_range.s_range().s1(), 2.0);
assert_eq!(lane_s_range.length(), 1.0);
}
#[test]
fn lane_s_range_api() {
let lane_s_range_1 =
crate::api::LaneSRange::new(&String::from("lane_test"), &crate::api::SRange::new(1.0, 2.0));
let lane_s_range_2 =
crate::api::LaneSRange::new(&String::from("lane_test"), &crate::api::SRange::new(2.0, 3.0));
assert!(lane_s_range_1.intersects(&lane_s_range_2, 0.0));
assert!(!lane_s_range_1.contains(&lane_s_range_2, 0.0));
}
#[test]
fn lane_s_range_get_intersection_with_intersection() {
let lane_s_range_1 =
crate::api::LaneSRange::new(&String::from("lane_test"), &crate::api::SRange::new(1.0, 3.0));
let lane_s_range_2 =
crate::api::LaneSRange::new(&String::from("lane_test"), &crate::api::SRange::new(2.0, 4.0));
let intersection = lane_s_range_1.get_intersection(&lane_s_range_2, 0.0);
assert!(intersection.is_some());
let intersection = intersection.unwrap();
assert_eq!(intersection.lane_id(), "lane_test");
assert_eq!(intersection.s_range().s0(), 2.0);
assert_eq!(intersection.s_range().s1(), 3.0);
}
#[test]
fn lane_s_range_get_intersection_with_no_intersection() {
let lane_s_range_1 =
crate::api::LaneSRange::new(&String::from("lane test_1"), &crate::api::SRange::new(1.0, 3.0));
let lane_s_range_2 =
crate::api::LaneSRange::new(&String::from("lane_test_2"), &crate::api::SRange::new(2.0, 4.0));
let intersection = lane_s_range_1.get_intersection(&lane_s_range_2, 0.0);
assert!(intersection.is_none());
}
}
mod lane_s_route {
// Helper function to create a LaneSRoute
// with two LaneSRange.
// ## Arguments
// * `s0_0` - The s0 of the first LaneSRange.
// * `s1_0` - The s1 of the first LaneSRange.
// * `s0_1` - The s0 of the second LaneSRange.
// * `s1_1` - The s1 of the second LaneSRange.
fn _get_lane_s_route(s0_0: f64, s1_0: f64, s0_1: f64, s1_1: f64) -> crate::api::LaneSRoute {
let ranges = vec![
crate::api::LaneSRange::new(&String::from("lane_test_1"), &crate::api::SRange::new(s0_0, s1_0)),
crate::api::LaneSRange::new(&String::from("lane_test_2"), &crate::api::SRange::new(s0_1, s1_1)),
];
crate::api::LaneSRoute::new(ranges)
}
#[test]
fn lane_s_route_new() {
let lane_s_route = _get_lane_s_route(0., 10., 0., 15.);
assert!(!lane_s_route.lane_s_route.is_null());
let ranges = lane_s_route.ranges();
assert_eq!(ranges.len(), 2);
assert_eq!(ranges[0].lane_id(), "lane_test_1");
assert_eq!(ranges[1].lane_id(), "lane_test_2");
}
#[test]
fn lane_s_route_length() {
let lane_s_route = _get_lane_s_route(0., 10., 0., 15.);
assert_eq!(lane_s_route.length(), 25.0);
}
#[test]
fn lane_s_route_intersects() {
let lane_s_route = _get_lane_s_route(0., 10., 0., 10.);
let lane_s_route_that_intersects = _get_lane_s_route(5., 9., 5., 9.);
let lane_s_route_that_not_intersects = _get_lane_s_route(11., 20., 11., 20.);
assert!(lane_s_route.intersects(&lane_s_route_that_intersects, 0.0));
assert!(!lane_s_route.intersects(&lane_s_route_that_not_intersects, 0.0));
}
}
}